回溯算法总结

回溯算法:

解决一个回溯问题,实际上就是一个决策树的遍历过程。

1、路径:也就是已经做出的选择。2、选择列表:也就是你当前可以做的选择。3、结束条件:也就是到达决策树底层,无法再做选择的条件。

代码方面,回溯算法的框架:

result = []
def backtrack(路径, 选择列表):
if 满足结束条件:
result.add(路径)
return

for 选择 in 选择列表:
做选择
backtrack(路径, 选择列表)
撤销选择

其核心就是 for 循环里面的递归,在递归调用之前「做选择」,在递归调用之后「撤销选择」,特别简单。

全排列问题:

List<List<Integer>> res = new LinkedList<>();

/* 主函数,输入一组不重复的数字,返回它们的全排列 */
List<List<Integer>> permute(int[] nums) {
// 记录「路径」
LinkedList<Integer> track = new LinkedList<>();
backtrack(nums, track);
return res;
}

// 路径:记录在 track 中
// 选择列表:nums 中不存在于 track 的那些元素
// 结束条件:nums 中的元素全都在 track 中出现
void backtrack(int[] nums, LinkedList<Integer> track) {
// 触发结束条件
if (track.size() == nums.length) {
res.add(new LinkedList(track));
return;
}

for (int i = 0; i < nums.length; i++) {
// 排除不合法的选择
if (track.contains(nums[i]))
continue;
// 做选择
track.add(nums[i]);
// 进入下一层决策树
backtrack(nums, track);
// 取消选择
track.removeLast();
}
}

N 皇后问题:

给你一个 N×N 的棋盘,让你放置 N 个皇后,使得它们不能互相攻击。皇后可以攻击同一行、同一列、左上左下右上右下四个方向的任意单位。

这个问题本质上跟全排列问题差不多,决策树的每一层表示棋盘上的每一行;每个节点可以做出的选择是,在该行的任意一列放置一个皇后。

vector<vector<string>> res;

/* 输入棋盘边长 n,返回所有合法的放置 */
vector<vector<string>> solveNQueens(int n) {
// '.' 表示空,'Q' 表示皇后,初始化空棋盘。
vector<string> board(n, string(n, '.'));
backtrack(board, 0);
return res;
}

// 路径:board 中小于 row 的那些行都已经成功放置了皇后
// 选择列表:第 row 行的所有列都是放置皇后的选择
// 结束条件:row 超过 board 的最后一行
void backtrack(vector<string>& board, int row) {
// 触发结束条件
if (row == board.size()) {
res.push_back(board);
return;
}

int n = board[row].size();
for (int col = 0; col < n; col++) {
// 排除不合法选择
if (!isValid(board, row, col))
continue;
// 做选择
board[row][col] = 'Q';
// 进入下一行决策
backtrack(board, row + 1);
// 撤销选择
board[row][col] = '.';
}
}

函数 backtrack 依然像个在决策树上游走的指针,通过 rowcol 就可以表示函数遍历到的位置,通过 isValid 函数可以将不符合条件的情况剪枝:

这部分主要代码,其实跟全排列问题差不多,isValid 函数的实现也很简单:

/* 是否可以在 board[row][col] 放置皇后? */
bool isValid(vector<string>& board, int row, int col) {
int n = board.size();
// 检查列是否有皇后互相冲突
for (int i = 0; i < n; i++) {
if (board[i][col] == 'Q')
return false;
}
// 检查右上方是否有皇后互相冲突
for (int i = row - 1, j = col + 1;
i >= 0 && j < n; i--, j++) {
if (board[i][j] == 'Q')
return false;
}
// 检查左上方是否有皇后互相冲突
for (int i = row - 1, j = col - 1;
i >= 0 && j >= 0; i--, j--) {
if (board[i][j] == 'Q')
return false;
}
return true;
}

数独:

// 函数找到一个答案后就返回 true
bool backtrack(vector<string>& board, int row) {
// 触发结束条件
if (row == board.size()) {
res.push_back(board);
return true;
}
...
for (int col = 0; col < n; col++) {
...
board[row][col] = 'Q';

if (backtrack(board, row + 1))
return true;

board[row][col] = '.';
}

return false;
}

其实想想看,回溯算法和动态规划是不是有点像呢?我们在动态规划系列文章中多次强调,动态规划的三个需要明确的点就是「状态」「选择」和「base case」,是不是就对应着走过的「路径」,当前的「选择列表」和「结束条件」?

某种程度上说,动态规划的暴力求解阶段就是回溯算法。只是有的问题具有重叠子问题性质,可以用 dp table 或者备忘录优化,将递归树大幅剪枝,这就变成了动态规划。而今天的两个问题,都没有重叠子问题,也就是回溯算法问题了,复杂度非常高是不可避免的。


   转载规则


《回溯算法总结》 胡哲 采用 知识共享署名 4.0 国际许可协议 进行许可。